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a b s t r a c t

In this work, the combination of carbon nuclear magnetic resonance (13C NMR) fingerprinting with
pattern-recognition analyses provides an original and alternative approach to screening commercial
gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic
fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical
Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-
eywords:
razilian commercial gasoline
uality control
arbon nuclear magnetic resonance
pectroscopic fingerprinting
attern-recognition multivariate SIMCA

defined classes. Following optimized 13C NMR-SIMCA algorithm, sensitivity values were obtained in the
training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Govern-
mental laboratories could employ this method as a rapid screening analysis to discourage adulteration
practices.

© 2010 Elsevier B.V. All rights reserved.
NP Regulation 309

. Introduction

Brazilian commercial gasoline is a petroleum-derived product
onstituted by a complex mixture of liquid aliphatic and aromatic
ydrocarbons, ranging from C4 to C12 carbon atoms, of which boil-

ng point ranges up to 225 ◦C. A typical gasoline is predominantly
mixture of paraffins (alkanes), olefins (alkenes), naphthenes

cycloalkanes), and aromatics, which can also contain some addi-
ives (aliphatic alcohols and/or methylethers) to improve its octane
umber. Oil feedstock, refining processes and aging are some of
he factors that affect the detailed chemical composition of gaso-
ine [1,2]. In Brazil, the commercial gasoline used as fuel in internal
ombustion engines may have an amount of anhydrous ethanol
etween 20 and 25%, a quantity not found in any other country [3].

The gasoline quality control is performed all around the world
y refineries, distribution companies and government inspection
epartments. It is a crucial procedure, as gasoline must follow
he quality standards set for local markets, meeting the require-
ents of car engines and with minimum possible damage to the
nvironment [4]. Generally, quality control of fuels is ensured by
he establishment of technical specifications, which vary accord-
ng to the different areas of the world, i.e., EN 228 in Europe, ASTM

∗ Corresponding author. Tel.: +55 16 3301 6666; fax: +55 16 3301 6693.
E-mail address: danilo@iq.unesp.br (D.L. Flumignan).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.04.058
D4814 in the USA, JIS K2202 in Japan and IS 2796 in India [5].
Unfortunately, the automotive gasoline adulteration is becoming a
common practice because of economic issues. In fact, fuel adulter-
ation has been worrying the Brazilian Government of Petroleum,
Natural Gas and Biofuels Agency (Agência Nacional do Petróleo,
Gás Natural e Biocombustíveis, ANP) not only for quality control
reasons, but also for tax evasion. Adulteration involving the addi-
tion of anhydrous ethanol and of petrochemical organic solvents,
such as light aliphatic (C4–C8), heavy aliphatic (C13–C15) and aro-
matic hydrocarbons, is one of the possibilities that can be observed.
In addition, low cost, lower tax rates and similar chemical com-
position are factors that also contribute to their use in cases of
adulteration [6].

Currently, in Brazil, commercial gasoline quality is controlled by
several technical specifications (namely physicochemical param-
eters) established by the ANP Regulation 309 [7]. All these
specifications are obtained by analytical protocols covered by
international guides, mainly from the American Society for Test-
ing and Materials (ASTM International) [8]. However, several of
these specifications need large amounts of sample and involve
manual operations, which are rather subjective, tedious and

prone to operational errors. Moreover, it is not always possi-
ble to identify gasoline adulteration using these specifications
because many solvents are very similar to gasoline, and conse-
quently, physicochemical parameters are usually not efficient for
detecting adulteration [2,4,6,9]. Previous studies have shown that
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hysicochemical parameters are not enough to identify adulter-
tions unless chemometric techniques had been employed. Only
dulterations using high levels of anhydrous ethanol, aromatic
olvents or heavy aliphatic hydrocarbons can be identified by
hysicochemical parameters [4,10,11–15]. Therefore, new alter-
ative analytical methods must be developed to monitor such
dulterations, as well as simple, fast and efficient methods to certify
he quality and authenticity of the commercial fuels are desirable
nd, thus, recommended for routine applications in quality control
onitoring programs.
Besides that, nuclear magnetic resonance (NMR) spectroscopy

as especially become a powerful tool for gasoline analysis with-
ut pre-treatment, mainly due to the fact that measurements are
ast and can be easily automated, allowing the analysis of a large
umber of samples in a short period of time. Therefore, it is rec-
mmended for routine applications in quality control monitoring
rograms. In general, the typical chemical shifts in the spectrum
re subdivided into regions and each one is associated with a spe-
ific molecular substructure, for example, aromatic, olefinic, and
liphatic compounds. Thus, with the objective of inserting new
nsights into this research field, we present here an application
ased on carbon nuclear magnetic resonance spectroscopy (13C
MR). Some interesting studies using 1H NMR and NIR in gasoline
omposition analysis showed promising results when compared
ith other techniques and also with physicochemical parameters

4,6,16–22]. However, effective quality control and adulteration
etection involving 13C NMR analysis have not actually been under-
aken before. As far as we know, this is the first application of
attern-recognition multivariate SIMCA chemometric coupled to
3C NMR fingerprintings for commercial automotive gasoline qual-
ty control.

. Experimental

.1. Physicochemical parameters

The gasoline samples were provided by a laboratory respon-
ible for monitoring the quality of automotive fuels, particularly,
asoline, ethanol and diesel oil. 2400 gasoline samples, collected
andomly from different gas stations in São Paulo state, Brazil,
ver six months, were stored in polyethylene terephthalate flasks
nd transported in refrigerated boxes, following official ANP proce-
ures. When arriving at the lab, 90 mL samples were immediately
ollected in 100 mL amber PET flasks with sealing caps and then,
tored in a freezer to avoid volatilization and to keep their integrity.
ll gasoline samples were previously analyzed by several physico-
hemical parameters established in ANP Regulation 309, namely,
tmospheric distillation temperatures – required to reduce the
riginal volume of the sample to 10%, 50% and 90%, final boiling
oint and distillation residue (ASTM D86) [23]; relative density
ASTM D4052) [24]; motor octane number, research octane num-
er and anti-knock index (correlation to ASTM D2699/D2700)
25,26]; percentage (v/v) of benzene (ASTM D6277) [27], anhydrous
thanol (NBR 13992) [28] and hydrocarbons (saturates, olefins
nd aromatics–correlated to ASTM D1319) [29]. The instruments
mployed in the analyses were an automatic distiller (Normalab
DI440 v.1.70C), a densimeter (Anton Paar DMA4500 v.4.600.b)
nd a portable IR analyzer (Grabner IROX2000 v.2.02). According to
hese results, the samples were classified in two groups: conform

meeting Brazilian specification) and nonconform (failing Brazil-
an specification). Based on the physicochemical parameters it was
ossible to select representative gasoline samples by exploratory
nalysis (Hierarchical Cluster Analysis, HCA) for further 13C NMR
nalyses.
a 82 (2010) 392–397 393

2.2. Carbon nuclear magnetic resonance (13C NMR) analyses

All 13C NMR spectroscopic fingerprintings were acquired at
room temperature on a Varian (Palo Alto, CA, USA) INOVA Unit
500 MHz Spectrometer, using a 5 mm single cell 1H/13C inverse
detection flow probe. For each analysis, 200 �L of gasoline sample
was dissolved in 600 �L of deuterated chloroform (CDCl3). 13C NMR
fingerprinting was obtained at 125 MHz frequency, using CDCl3 as
the solvent and internal standard. The spectral profiles of gaso-
line were acquired in 10 min under the experimental conditions.
Acquisition parameters were optimized to 6.5 �s 45◦ pulse and
0.957 ms recycle delay. Acceptable spectra were obtained from 296
scans (transients) with spectral width set at 230 ppm (31 446.5 Hz)
and using an exponential weighing factor corresponding to a line
broadening of 1 Hz.

13C NMR spectral profiles, taken into pattern-recognition
chemometrics analysis, are reported in parts per million (ppm)
relative to CHCl3 residual signals at 77.0 ppm. The FIDs, acquired
with 65 536 data points, were zero filled and Fourier transformed.
The phase and baseline were automatically corrected in all spec-
tra. Additionally, fingerprinting spectra were normalized to 1-norm
(the area under the sample profile is set equal to one) for compensa-
tion of baseline distortions and bucket-width integrated (0.02 ppm)
for more effective compensation of peak-shifts. At last, such spectra
profile was exported as ASCII files and transferred to a PC for data
analysis.

2.3. Pattern-recognition multivariate chemometric analysis

In this field, the pattern-recognition methods were divided in
Hierarchical Cluster Analysis (HCA) and Soft Independent Mod-
eling of Class Analogy (SIMCA). The first ones are unsupervised
statistical methods that give complementary information about
the similarities and groupings of the samples considered. If a trend
exists, it is worthwhile evaluating the possibility of classifying the
samples. In conjunction with these, SIMCA is a well-known mul-
tivariate supervised pattern-recognition method that constructs
models using samples that were preassigned to a category, i.e., in
this case, conform (meeting Brazilian specification) and noncon-
form (failing Brazilian specification).

HCA is used to emphasize and identify natural groups of samples
based on their physicochemical parameters. Dendrograms, a visual
representation of HCA results, illustrate the categories as cluster-
ing of samples and reveals similarities between them. Two criteria
must be chosen to perform HCA: firstly, the distance between sam-
ples or groups and secondly, the criteria to link samples and groups.
The usual way to calculate the distance is by using the Euclidean
distance, where the distance between objects k and l is evaluated in
J dimensions. Euclidean distance is an “ordinary” distance between
two points that one would measure with a ruler. On the other hand,
the most appropriate linkage criterion is incremental, by which the
groups are linked causing a minimum “loss of information” and
where two groups of samples differ only slightly. HCA, performed
using Pirouette software (version 3.11, Infometrix Co., Woodinville,
WA, USA) [30] and codified data, was applied to each monthly
spreadsheet of physicochemical parameters results, used as vari-
ables. Firstly, the variables were autoscaled and then logarithmic
transformed in order to select those representative samples that
presented minimal similarity. The similarity line, which establishes
clusters, presented values between 0.5 and 0.6. From the monthly

dendrograms, each one constituted of 400 samples, 25 representa-
tive gasoline samples were monthly selected for further 13C NMR
analysis.

SIMCA chemometric method was applied in order to build a
screening model of multivariate pattern-recognition technique.
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showing peaks almost in all spectral regions. Based on these peaks,
typical spectrum of Brazilian gasoline is shown in Fig. 2, but it is
not possible to see that many compounds present in adulterating
solvents are also present in gasoline. Also, all spectrum overlap-
ping (Fig. 2) shows very similar spectroscopic fingerprinting from
ig. 1. Dendrograms for selection of the 25 representative monthly gasoline samp
eptember.

his technique describes different classes of samples based on
lassification rules which are defined by the values of distinct mea-
urements provided for a set of known samples (the training set).
hese rules are then used to classify external samples (the predic-
ion set) on the basis of the same measurements. The number of
amples correctly classified by the model is a measure of the qual-
ty of the criteria employed. If appropriate, the model can then,
e used to classify unknown samples according to the same rules.
n order to apply SIMCA modelling, 13C NMR spectroscopic finger-
rints of 150 representative gasoline samples were shifted to right
r left as needed, with the TMS signal as the reference. 13C NMR
pectroscopic fingerprint of 100 gasoline samples were employed
n the training set, and the remaining 50 samples formed the pre-
iction set. These samples were selected from exploratory analysis
CA of its spectroscopic profiles. These spectra profile were saved
s ASCII files and transferred to a PC for data analysis. The data
atrix (26,713 × 150 × 2; chemical shifts × representative gasoline

amples × preassigned categories: conform and nonconform) were
onstructed and imported into Pirouette software (version 3.11,
nfoMetrix Co., Woodinville, WA) [30] for SIMCA algorithm. Each
ine in the matrix corresponds to a sample, and the columns rep-
esent the number values obtained from the chemical shifts and
ntensities of the peaks. 13C NMR spectra were normalized to 1-
orm (the area under the sample profile is set equal to one), and
he logarithmic transformation was taken. Autoscaling – in which
ach variable is mean-centered and scaled to unity variance – was
pplied to give each variable equal weight and, therefore, large and
mall peaks were treated with equal emphasis. 13C NMR-SIMCA
lgorithm was applied to whole data set, excluding CDCl3 and TMS
ignals.

. Results and discussion

Significant changes in the physicochemical parameters of Brazil-
an automotive gasoline may be caused by the addition of excess

AE and/or adulterating solvents, especially benzene, toluene,
ylenes, hexane, complex hydrocarbon mixtures, mineral spirits,
erosene, rubber solvent, petrochemical naphtha, diesel and thin-
er. These solvents can give rise to variations in relative density,
ctane number, hydrocarbon composition and distillation curve
at exhibited least similarity: (a) April, (b) May, (c) June, (d) July, (e) August and (f)

profile. 2400 samples of commercial gasoline were collected in
the State of São Paulo, Brazil, over a 6-month period and 150
representative samples (79 meeting Brazilian specification and 71
failing Brazilian specification) were selected using HCA analysis. Six
dendrograms (Fig. 1) – each one constituted of 400 samples and
obtained taking into account the Euclidean distance, incremental
linkage and similarity line criteria – resulted in 25 clusters (repre-
sented by different colors). The color bar sequence, automatically
assigned by the Pirouette chart preference, is also used to assign
colors to sample and variable clusters in the dendrogram, based on
the location of the similarity line. For each monthly dendrogram,
25 representative gasoline samples, that exhibited least similarity,
were selected for 13C NMR analysis, maintaining the represen-
tatively of the dataset. Summary of physicochemical parameters
values of representative commercial gasoline samples is presented
in Table 1.

13C NMR spectrum fingerprinting of gasoline is very complex,
Fig. 2. Typical 13C NMR overlapped spectroscopic fingerprints of all representative
commercial gasoline samples (CDCl3, 500 MHz).
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Table 1
Summary of representative gasoline physicochemical parameters and its specification according to ANP Regulation 309.

Guide Physicochemical parameters ANP specification Representative gasoline set

Minimum Maximum Range Mean

ASTM D4052 Relative density (g cm−3) Not specified 0.7298 0.7931 0.0633 0.7520
ASTM D6277 Benzene (% v/v) 1.0, max 0.0 0.62 0.62 0.33
NBR 13992 Anhydrous ethanol (% v/v) 25 ± 1 23.0 66.0 43.0 27.2

Distillation curve

ASTM D86

10% Evaporated (◦C) 65.0, max 44.2 73.2 29.0 55.3
50% Evaporated (◦C) 80.0, max 63.3 116.5 53.2 72.9
90% Evaporated (◦C) 145.0–190.0 77.8 191.1 113.3 156.9
Final boiling point (◦C) 220.0, max 78.8 285.7 206.9 204.9
Residue (% v/v) 2.0, max 0.4 2.8 2.4 1.0
Octane numbers

correlation to ASTM
D2699/2700

Motor Octane Number 82.0, min 77.4 87.2 9.8 82.2
Research Octane Number Not specified 89.8 98.4 8.6 95.0
Anti-knocked Index 87.0, min 84.6 91.4 6.8 88.6
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overlapping between gasoline samples in the PCA space. The coor-
dinates of a bounding ellipse (based on the standard deviations of
the scores in each principal component direction) for each cate-
gory are projected into this 3-factor principal component space;
they form a confidence interval for the distribution of the category.

Fig. 3. SIMCA class 3D projections of samples in the training set on score plots. Note:
green and red points represent conform and nonconform class, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.).

Table 2
Absolute errors in classification obtained by SIMCA.

Samples Class Absolute error
Hydrocarbon composition

correlation to ASTM
D1319

Saturates (% v/v) Not specifi
Olefins (% v/v) 45.0, max
Aromatics (% v/v) 38.0, max

ne gasoline to another, because the basic originating refinery pro-
esses are quite similar. 13C NMR chemical shifts follow the same
rinciples as those of 1H NMR, although the typical range of chem-

cal shifts is much larger than for 1H (by a factor of about 20).
n general, classes of compounds (not individual ones) are associ-
ted with typical spectral regions, i.e., aromatic chemical shifts can
e associated with peaks at 110–150 ppm, while 50–80 ppm can
e associated to alcohol or R–CH2–O compounds and the region
etween 10 and 50 ppm contains signals mainly due to cycloalka-
es (naphthenes) and normal- and iso-paraffins [31].

It is clear that visual inspection of spectroscopic profiles is not
fficient in identifying the presence of adulterant solvents in gaso-
ine (Fig. 2) and, therefore, to distinguish if commercial gasoline
s meeting or failing Brazilian specification. Any attempt to distin-
uish between gasoline samples must consider numerous peaks
nd requires the application of a chemometric classification tech-
ique. Therefore, pattern-recognition chemometric approach is a
ery useful tool and is often employed for gasoline discrimina-
ion. In this work, we chose the entire 13C NMR spectrum (except
DCl3 and TMS signals) for the SIMCA analysis because the choice
f a large number of peaks allows us to achieve a more reliable
lassification model [4,6,9,22]. In this way, recently, D’Ávila and co-
orkers [4] and Monteiro et al. [6] have distinguished intentionally

dulterated gasoline samples by organic solvents for routine quality
ontrol, based on the application of 1H NMR-PCA and 1H NMR-
CA exploratory models or based on the average group molecular
eight approach and relative-content concept involving aromat-

cs, olefinics and paraffinics, also including ethanol and benzene
ontents.

The SIMCA method was selected since it permits the classi-
cation of an unknown sample on the basis of rules defined by
training set. Additionally, gasoline samples’ quality proceeding

rom physicochemical parameters established by ANP Regulation
09 (as supervisioned class) was established in the data matrix for
he SIMCA analysis to be performed. In the development of SIMCA
lgorithm, 100 gasoline samples were used to compose the training
et and the remaining 50 samples were used as external prediction
et. The prediction set selection was performed through hierarchi-
al cluster analysis (HCA) of all representative gasoline samples.
he dendrogram, results in three different clusters, in which a pro-
ortional number of samples were selected from each cluster.
Moreover, the probability threshold of the algorithm was based
n a 95% confidence level, while several pre-treatments and pre-
rocessing were tested, and the best results were obtained when
he logarithmical and autoscale were applied. The autoscale pre-
rocessing was very important because it allowed the attribution
4.2 68.5 64.3 38.8
0.0 29.9 29.9 19.0
7.1 26.4 19.3 15.8

of the same importance for all spectral regions. In SIMCA model,
the 3D class projection (Fig. 3) provides a visual evaluation of the
degree of class separation. To create this object, a 3-factor princi-
pal component analysis was performed on the entire training set
during the SIMCA processing. It was also possible to see reasonable
tendency segregations between samples in the scores hyperboxes.
In addition, a close examination of the SIMCA 3D results showed an
Training set Prediction set

Type I Type II Type I Type II

Conform class 0 0 0 5
Nonconform class 0 1 0 3
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Table 3
Physicochemical parameter values associated with ANP Regulation 309 for misclassified gasoline samples in the training and prediction sets by the SIMCA model. Entries in
bold font indicate parameters nonconform to ANP specifications.

Samples Physicochemical parameters associated with ANP Regulation 309

Density T10 T50 T90 FBP MON RON AI Benzene Saturates Olefins Aromatics AE Residue

Misclassified samples in the training set by SIMCA model
13 April 0.7558 55.0 73.2 151.8 199.8 83.5 97.3 90.4 0.40 38.1 16.9 13.7 35 0.9
Misclassified samples in the prediction set by SIMCA model
19 April 0.7447 49.2 71.4 151.2 197.6 82.2 95.4 88.8 0.47 33.2 25.6 15.6 25 0.9
1 May 0.7567 63.2 74.9 161.4 195.9 81.3 93.6 87.5 0.17 47.7 9.0 18.2 26 1.0
24 May 0.7566 53.1 73.7 173.2 221.0 82.4 95.5 89.0 0.41 37.5 23.2 15.7 24 0.6
15 June 0.7484 52.5 72.5 154.4 187.3 82.0 94.5 88.3 0.31 37.7 23.4 13.7 25 1.0
21 June 0.7497 51.2 71.6 153.4 199.6 82.5 95.8 89.2 0.44 35.0 24.3 14.4 28 1.1
22 June 0.7522 50.5 70.3 153.6 197.4 81.7 94.2 88.0 0.39 45.6 15.0 14.9 25 0.8
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21 July 0.7453 55.2 72.2 155.7 193.4 81.6 93.8
19 July 0.7501 54.7 71.9 159.1 207.6 82.4 95.5

10, T50 and T90—distillation temperatures required to reduce the volume of the sa
umber; RON—research octane number; AI—anti-knock index; AE—anhydrous etha

ig. 3 shows the score points for two categories (conform and non-
onform) and the corresponding confidence intervals suggested by
he single pixel grey points.

The SIMCA absolute errors in classification algorithm model
ould be of two types: Type I: object not included in its own class
nd Type II: object included in a wrong class. Table 2 summarizes
he error in classification pointed out by full cross-validation of
IMCA algorithm. As it can be seen in Table 2, while Type I error was
ot observed, a significant number of Type II was obtained in the
ommercial gasoline samples, in both, conform and nonconform
lasses.

In SIMCA model training set, three principal components
ccounted approximately 70.0% of the total within set variance and
ll samples correctly classified, except for one sample (13 April).
he misclassification may be associated to anhydrous ethanol (AE)
hysicochemical parameter; measured according to NBR 13992
tandard procedure (Table 3). Hence, 99.0% of the samples were
orrectly classified by application of the SIMCA method. Based on
hese findings, it could be concluded that the modelling power of
he training set was satisfactory.

Lastly, 50 new samples – the external prediction set – were used
o evaluate the model. While all samples were clearly well segre-
ated, eight of them were apparently misclassified according to the
IMCA model: five nonconform samples were classified as conform
o ANP regulations and three samples conformed were classified
s nonconform by SIMCA (Table 3). The misclassifications may be
ssociated mainly to motor octane number (MON) physicochemi-
al parameter (Table 3). Another misclassification physicochemical
arameter was related to FBP and AE values. In MON values cases,
he physicochemical results were not conclusive, because the val-
es were very close to the limits established by ANP Regulation 309
nd were certainly within the confidence limits of the method used
0.5 for MON). In this parameter, three samples (1 May; 22 June;
1 July) showed values between 81.3 and 81.9, while the minimum
ermitted value is 82.0. The same characteristics were obtained for
amples 24 May and 21 June, where FBP temperature was 221.0 ◦C,
hile the established temperature is 220.0 ◦C, and AE content was

8% (v/v), while the established percentage is between 24 and 26%
v/v). Therefore, none of these parameters can be considered sig-
ificantly different from the limiting values when the confidence

imits are taken into account.
In contrast, three samples (19 April; 15 June; 19 July) that were

ully conformed to ANP Regulation 309 were misclassified by the

IMCA model. Based on these findings, 92.0% of the samples in
he prediction set were correctly classified by application of the
IMCA method. From this, it may be concluded that the mod-
lling power was satisfactory and perfectly acceptable. Therefore,
3C NMR fingerprintings and pattern-recognition SIMCA multivari-
7.7 0.31 41.9 22.4 10.8 25 1.1
9.0 0.44 33.7 22.9 16 25 0.7

to 10, 50 and 90% of its original value; FBP—final boiling point; MON—motor octane
ntent.

ate chemometric analysis supplied enough information to identify
the slight differences between conform and nonconform gaso-
line, allowing the evident distinction between these two groups.
Such results were in agreement with physicochemical analyses and
proved that 13C NMR-SIMCA algorithm allows the segregation of
commercial gasoline based on its quality.

4. Conclusions

An analytical method, based on pattern-recognition SIMCA
chemometric analysis of 13C NMR spectroscopic fingerprinting, has
been developed in order to determine the quality specified by ANP
Regulation 309 of Brazilian commercial gasoline. 13C NMR tech-
nique has a high potential to determine the quality of Brazilian
commercial gasoline and research shows that the resulting spectro-
scopic fingerprints associated with the SIMCA model classification
were satisfactory for screening the quality of gasoline samples.
Finally, this work pointed out that 13C NMR-SIMCA algorithm, as an
alternative analytical methodology, offers an appealing procedure
for government agency laboratories to control the quality of com-
mercial automotive gasoline. This method can be applied in routine
quality control, in view of possible automation, given that it allows
analyses of a great number of samples, and employs only one NMR
dedicated instrument.
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